QQ:168346335
Tel:13120095566
首页 品牌新闻 内容详情

马克森电机 EC45/EC8/EC-4pole30MAXON马达

2023-04-15 00:00:00 221 admin

马克森电机 EC45/EC8/EC-4pole30MAXON马达

马克森电机 EC45/EC8/EC-4pole30MAXON马达


MAXON联轴器


为您介绍减速机传动原理来源0621:0减速机一般用于低转速大扭矩的传动设备,把电动机、内燃机或其它高速运转的动力,通过减速机的输入轴上的齿数少的齿轮啮合输出轴上的大齿轮来达到减速的目的,大小齿轮的齿数之比,就是传动比。减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩。减速器的种类繁多,型号各异,不同种类有不同的用途。按照传动类型可分为齿轮减速器、蜗杆减速器和行星齿轮减速器;按照传动级数不同可分为单级和多级减速器;按照齿轮形状可分为圆柱齿轮减速器、圆锥齿轮减速器和圆锥圆柱齿轮减速器;按照传动的布置形式又可分为展开式、分流式和同轴式减速器。为了便于合理选择减速机,故将几种常见减速机的类型、特点及应用一一列出,供选型时参考。1单级圆柱齿轮减速机单级圆柱齿轮减速机适用于减速比3~5。轮齿可为直齿、斜齿或人字齿,箱体通常采用铸铁铸造,也可以用钢板焊接而成。轴承常用滚动轴承,只有重载或特高速时才用滑动轴承。2双级圆柱齿轮减速机双级圆柱齿轮减速机分有展开式、分流式、同轴式三种,适用减速比8~40。展开式高速级长尾斜齿,低速级可为直齿或斜齿。由于齿轮相对轴承布置不对称,要求轴的刚度较大,并使转矩输入、输出端远离齿轮,以减少因轴的弯曲变形引起载荷沿齿宽分布不均匀。结构简单,应用很广。分流式一般采用高速级分流。由于齿轮相对轴承布置对称,因此齿轮和轴承受力较均匀。为了使轴上总的轴向力较小,两对齿轮的螺旋线方向应相反。结构较复杂,常用于大功率、变载荷的场所。同轴式减速机的轴向尺寸较大,中间轴较长,刚度较差。当两个大齿轮浸油深度相近时,高速级齿轮的承载能力不能充分发挥。常用于输入和输出轴同轴线的场所。3单级锥齿轮减速机单级锥齿轮减速机适用于减速比2~4。传动比不宜过大,以减小锥齿轮的尺寸,利于加工。只有用于两轴线垂直相交的传动中。4圆锥、圆柱齿轮减速机圆锥、圆柱齿轮减速机适用于减速比为8~15。锥齿轮应布置在高速级,以减小锥齿轮的尺寸。锥齿轮可为直齿或曲线齿。圆柱齿轮多为斜齿,使其能与锥齿轮的轴向力抵消一部分。5蜗杆减速机主要有圆柱蜗杆减速机,圆弧环面蜗杆减速机,锥蜗杆减速机和蜗杆—齿轮减速机,其中以圆柱蜗杆减速机很为常用。蜗杆减速机适用于减速比为10~80。结构紧凑,传动比大,但传动效率低,适用于小功率、间隙工作的场合。当蜗杆圆周速度V≤4~5m/s时,蜗杆为下置式,润滑冷却条件较好;当V≥4~5m/s时,油的搅动损失较大,一般蜗杆为上置式。6行星齿轮减速机为结构原因,单级减速很小为3,很大一般不超过10,常见减速比为3/4/5/6/8/10,减速机级数一般不超过3,但有部分大减速比定制减速机有4级减速。相对其他减速机,行星减速机具有高刚性、高精度(单级可做到1分以内)、高传动效率(单级在97%98%)、高的扭矩、体积比、终身免维护等特点。因为这些特点,行星减速机多数是安装在步进电机和伺服电机上,用来降低转速,提升扭矩,匹配惯量。 做为一家专业的高级仪器仪表供应商,自身在瑞士汉诺威设有采购中心,针对进口备品特别是欧美产品有着独到的理解和优势,经过几年的技术及人员累积,目前可以针对产品提供完善的备件,针对产品系列问题可以提供一条龙服务,大缩短了客户维修等待的时间,欢迎广大用户前来咨询交流

马克森电机 EC45/EC8/EC-4pole30MAXON马达

HEIDENHAIN旋转编码器介绍来源:0HEIDENHAIN旋转编码器介绍安装方式HEIDENHAIN旋转编码器内置轴承和定子,编码器的圆光栅直接与被测轴相连。扫描单元通过滚珠轴承安装在轴上,并由定子连轴器支撑。当轴进行角加速度时,定子电机必须只吸收轴承摩擦力所导致的牛矩,因此它能大限度地降低静态和动态测量误差。而且,安装在定子上的电机还能补偿被测轴的轴向运动。安装简单总长度短电机的固有频率高允许使用空心轴内置轴承的旋转编码器由分离的电机连接可用于实心轴。推荐使用的连接被测轴的电机能补偿径向和轴向误差。采用分离电机的角度编码器能支持更高的轴转速。 无内置轴承旋转编码器工作时没有摩擦。扫描头和圆光栅、光栅鼓或钢带这两个部件可在组装时分别调整。有内置轴承的旋转编码器海德汉的ERN、ECN和EQN旋转编码器自带轴承和安装的定子电机,具有安装简单、总长度短的特点。其应用包括用于简单测量任务以及饲服驱动的位置和转速控制。空心轴可以直接滑入并固定在被测轴上。海德汉的ROD、ROC和ROQ旋转编码器自带轴承且具有密封结构。这些编码器均坚固耐用、结构紧凑。它通过一个分离电机由转子连接被测轴,电机可以补偿轴向运动和编码器轴与被测轴的不同轴度。旋转编码器,带内置轴承,采用定子电机安装系列应用ExN 1000Rotary Encoders微型轴径6 mm盲孔轴外壳外径 36.5 mmExN 400Rotary Encoders小型行业标准尺寸和输出信号外壳外径 58 mmExN 100Rotary Encoders用于大直径轴空心轴 20 mm,25 mm,38 mm,50 mm内径D外壳外径 87 mmExN 1100伺服驱动编码器内置在马达中微型轴径6 mm盲孔轴外壳外径 36.5 mmExN 1300伺服驱动编码器内置在马达中58 mm外壳外径定子电机适用于65 mm内径的定位孔1:10锥度,有效直径9.25 mm,用于超高刚性连接带内置轴承、采用分离电机的旋转编码器ROC/ROQ/ROD 400Rotary Encoders行业标准尺寸和输出信号采用同步法兰或夹紧法兰安装轴径6 mm,同步法兰,10 mm夹紧法兰ROD 1000Rotary Encoders微型采用同步法兰安装轴径4 mm外壳外径 36.5 mm无内置轴承旋转编码器除系统精度外,无内置轴承旋转编码器的读数头安装和调整对精度有重大影响。特别是被测轴安装的偏心量和径向跳动对精度的影响十分。感应式旋转编码器ECI/EQI 1300的机械尺寸兼容光电式编码器ExN 1300用中心螺栓固定轴。编码器定子通过定位孔的螺栓在轴向紧固。海德汉的ECI 4000/EBI 4000系列旋转编码器继续扩充感应式位置编码器产品线。该产品是模块型无内置轴承旋转编码器,空心轴直径为90 mm。用户用该产品可将电机反馈系统的齿形带驱动的连接方式改为使用力矩电机。海德汉光电式ERO系列模块型旋转编码器由一个带轴毂的圆光栅码盘和读数头组成。特别适用于安装空间有限或不允许存在摩擦的应用。系列特点ECI/EQI 1100伺服驱动编码器机械尺寸兼容ECN/EQN 1100盲孔直径D 6 mm外壳外径35 mmECI/EQI 1300伺服驱动编码器机械尺寸兼容ECN/EQN 1300锥度轴或空心轴外壳外径58 mmECI/EBI 4010ECI 4010 / EBI 4010 – Absolute Rotary Encoders with 90 mm Hollow shaft for SafetyRelated Applications式旋转编码器,空心轴直径为90 mm高抗噪感应扫描原理空心轴直径Ø 90 mmEBI 4010通过后备电池供电提供多圈功能包括读数头和栅鼓ECI 4090 SECI 4090S – Absolute Rotary Encoder with 90 mm Hollow Shaft and DRIVECLiQ Interface for SafetyRelated Applications式旋转编码器,空心轴直径为90 mm高抗噪感应扫描原理空心轴直径Ø 90 mm包括读数头和栅鼓ECI/EBI 4010ECI 4010 / EBI 4010 180 mm 空心轴式 旋转编码器 增加措施后满足SIL 3级 高安全性应用要求式旋转编码器,空心轴直径为180 mm高抗噪感应扫描原理空心轴直径Ø 180 mmEBI 4010通过后备电池供电提供多圈功能包括读数头和栅鼓ECI 4090 SECI 4090 S Absolute Rotary Encoder with 180 mm Hollow Shaft and DRIVECLiQ Interface for SafetyRelated Applications式旋转编码器,空心轴直径为180 mm高抗噪感应扫描原理空心轴直径Ø 180 mm包括读数头和栅鼓ERO 1200伺服驱动编码器紧凑型轴直径达12 mmERO 1400伺服驱动编码器微型模块型旋转编码器,被测轴可达8 mm安装辅件带盖板ECI/EBI 100伺服驱动编码器感应式位置旋转编码器轴安装的法兰空心轴带后备电池圈数计数器的多圈功能外壳外径87 mm


为您介绍电机六大节能方案来源0613:0 1、电机负载率低 由于电动机选择不当,富裕量过大或生产工艺变化,使得电动机的实际工作负荷远小于额定负荷,大约占装机容量30%~40%的电动机在30%~50%的额定负荷下运行,运行效率过低。 2、电源电压不对称或电压过低 由于三相四线制低压供电系统单相负荷的不平衡,使得电动机的三相电压不对称,电机产生负序转矩,增大电机的三相电压不对称,电机产生负序转矩,增大电机运行中的损耗。另外电网电压长期偏低,使得正常工作的电机电流偏大,因而损耗增大,三相电压不对称度越大,电压越低,则损耗越大。 3、老、旧(淘汰)型电机的仍在使用 这些电机采用E缘,体积较大,启动性能差,效率低。虽经历年改造,但仍有许多地方在使用。 4、维修管理不善 有些单位对电机及设备没有按照要求进行维修保养,任其长期运行,使得损耗不断增大。 因此,针对这些耗能表现,选择何种节能方案值得研究。 1、选用节能电动机高效电动机降低各种损耗 选用节能电动机高效电动机与普通电动机相比,化了总体设计,选用了高质量的铜绕组和硅钢片,降低了各种损耗,损耗下降了20%~30%,效率提高2%~7%;投资回收期般为1~2年,有的几个月。相比来说,高效电动机比J02系列电动机效率提高了0.413%。因此用高效电动机取代旧式电动机势在必行。 2、选择电机容量适当的电机 适当选择电动机容量达到节能对三相异步电动机3个运行区域作了如下规定负载率在70%~100%之间为经济运行区;负载率在40%~70%之间为般运行区;负载率在40%以下为非经济运行区。电机容量选择不当,无疑会造成对电能的浪费。因此采用合适的电动机,提高功率因数、负载率,可以减少功率损耗,节省电能。 3、采用磁性槽楔降低空载铁损耗 采用磁性槽楔代替原槽楔磁性槽楔主要降低异步电动机中的空载铁损耗,空载附加铁损耗是由齿槽效应在电机内引起的谐波磁通而在定子、转子铁芯中产生的。定子、转子在铁芯内感生的高频附加铁损耗称为脉振损耗。另外,定子、转子齿部时而对正、时而错开,齿面齿簇磁通发生变动(公众号:泵管),可在齿面线层感生涡流,产生表面损耗。脉振损耗和表面损耗合称高频附加损耗,它们占电机杂散损耗的70%~90%,另外的10%~30%称为负载附加损耗,是由漏磁通产生的。虽然使用磁性槽楔会使启动转矩下降10%~20%,但采用磁性槽楔的电动机比采用普通槽楔的电动机的铁损耗可降低60k,而且很适应空载或轻载启动的电动机改造。 4、采用Y/△自动转换装置解决电能浪费现象 采用Y/△自动转换装置为解决设备轻载时对电能的浪费现象,在不更换电动机的前提下,可以采用Y/△自动转换装置以达到节电的目的。因为三相交流电网中,负载的不同接法所获取的电压是不同的,因而从电网中吸取的能量也就不同。 5、电动机的功率因数无功补偿减少功率损耗 电动机的功率因数无功补偿提高功率因数,减少功率损耗是无功补偿的主要目的。功率因数等于有功功率与视在功率之比,通常,功率因数低,会造成电流过大,对于个给定的负荷,当供电电压定时,则功率因数越低,电流就越大。因此功率因数尽量的高,以节约电能。 6、绕线式电动机液体调速液体电阻调速技术达到无调速 绕线式电动机液体调速液体电阻调速技术是在传统产品液体电阻起动器的基础上发展而成的。仍以改变板间距调节电阻的大小达到无调速的目的。这使它同时具有良好的起动性能,它长期通电,带来了发热升温问题,由于采用了特的结构和合理的热交换系统,其工作温度被限定在合理的温度之下。绕线电机用液体电阻调速技术,以其工作可靠、安装方便、节能幅度大、易维护及投资低等点,得到了迅速推广,对于些调速精度要求不高,调速范围要求不宽,并且不频繁调速的绕线式电动机,如风机、水泵等设备的大中型绕线式异步电动机采用液体调效果果显然。 做为一家专业的高级仪器仪表供应商,自身在瑞士汉诺威设有采购中心,针对进口备品特别是欧美产品有着独到的理解和优势,经过几年的技术及人员累积,目前可以针对产品提供完善的备件,针对产品系列问题可以提供一条龙服务,大缩短了客户维修等待的时间,欢迎广大用户前来咨询交流

原标题:马克森电机 EC45/EC8/EC-4pole30MAXON马达

 暂无评论,快来抢沙发吧~

发布评论

底部导航